
Structured Query
Language (SQL) II
CEE412/CEE522

Transportation Data Management And Visualization

WINTER 2020

Announcement
Assignment 2 solution is posted

◦ Q 1: list all required items
◦ Q 3: did not form the loop properly, misplaced certain things in E/R diagram, and duplicated

relationships
◦ Q 4: missed the pilot relationship

◦ Please come to the TA office hours or send emails to us if you have any
questions.

Project 1
◦ Database will be accessible by today

Next Wednesday: Midterm 1

2/5/20 CEE 412/ CET 522 2

Today’s Outline

◦ Grouping and Aggregation in SQL

◦ Subqueries

◦ Union, Intersection, and Difference

◦ Constraints in SQL

2/5/20 CEE 412/ CET 522 3

Aggregation Operators
SQL supports five aggregation operators
◦ SUM
◦ MIN
◦ MAX
◦ AVG
◦ COUNT
◦ Median

These aggregations apply to a single attribute or value, except
COUNT:
◦ COUNT(*) can be used to count all tuples.

2/5/20 CEE 412/ CET 522 4

Aggregation in SQL

(No column name)

24.99

PName Price Category Manufacturer

Gizmo 19.99 Gadgets GizmoWorks

Powergizmo 29.99 Gadgets GizmoWorks

SingleTouch 149.99 Photography Canon

MultiTouch 203.99 Household Hitachi

Product

SELECT AVG(price)
FROM product

WHERE manufacturer = 'GizmoWorks'

SELECT COUNT(*) AS ProductCount
FROM product

WHERE manufacturer = 'GizmoWorks'

ProductCount

2

2/5/20 CEE 412/ CET 522 5

Aggregation in SQL - Quick Note about COUNT

◦ COUNT applies to duplicates, unless otherwise stated:

PName Price Category Manufacturer

Gizmo 19.99 Gadgets GizmoWorks

Powergizmo 29.99 Gadgets GizmoWorks

SingleTouch 149.99 Photography Canon

MultiTouch 203.99 Household Hitachi

Product

SELECT COUNT(category) AS CategoryCt
FROM product

SELECT COUNT(DISTINCT category) AS CategoryCt
FROM product

CategoryCt

4

CategoryCt

3

2/5/20 CEE 412/ CET 522 6

Aggregation in SQL

◦ Example 1: find total sales

◦ Example 2: find total sales of bagels

Product Date Price Quantity
Banana 2016-10-19 0.52 17
Bagel 2016-10-20 0.85 20
Bagel 2016-10-21 0.85 15
Banana 2016-10-22 0.52 7

Sale

SELECT SUM(price * quantity) AS TotalSale
FROM sale

TotalSale

42.23

SELECT SUM(price * quantity) AS BagelSale
FROM sale

WHERE product = 'bagel'

BagelSale

29.75

2/5/20 CEE 412/ CET 522 7

Grouping and Aggregation in SQL
Usually, we want aggregations on certain parts of the relation.

Sale(product, date, price, quantity)

◦ Example 3: find total sales per product.

SELECT Product, SUM(price * quantity) AS TotalSale
FROM sale

GROUP BY Product

Product TotalSale

Bagel 29.75

Banana 12.48

2/5/20 CEE 412/ CET 522 8

Grouping and Aggregation in SQL
Procedure of grouping and aggregation in SQL:
1. Compute the FROM and WHERE clauses.
2. Separate the table for every combination of GROUP BY attributes.
3. Apply aggregation and return one tuple for each sub-table.

When aggregation is used, SELECT can only have two types of
expressions:
◦ Attributes in the GROUP BY clause
◦ Aggregations

2/5/20 CEE 412/ CET 522 9

Grouping and Aggregation in SQL
How GROUP BY makes things easy?

◦ Using GROUP BY

◦ Compared to not using GROUP BY (subquery / inner query / nested query)

SELECT DISTINCT x.Product,
(SELECT SUM(price * quantity) FROM sale AS y
WHERE x.product = y.product) AS TotalSale

FROM sale AS x

SELECT Product, SUM(price * quantity) AS TotalSale
FROM sale

GROUP BY Product

2/5/20 CEE 412/ CET 522 10

Grouping and Aggregation in SQL
Multiple aggregations
◦ For each product, what is the total sales and the max quantity sold?

SELECT Product, SUM(price * quantity) AS TotalSale,
MAX(quantity) AS MaxQuantity

FROM sale
GROUP BY Product

Product TotalSale MaxQuantity

Bagel 29.75 20

Banana 12.48 17

2/5/20 CEE 412/ CET 522 11

HAVING Clause
HAVING <conditions> may follow a GROUP BY clause.
The conditions applies to each group, and groups not satisfying
<conditions> are eliminated.

The conditions in HAVING clause may refer to attributes as long as
the attribute makes sense within a group; i.e., it is either:
◦ Attributes in the GROUP BY clause
◦ Aggregations

2/5/20 CEE 412/ CET 522 12

HAVING Clause
◦ Find the product name and total sales for each product sold after 10/1/2016

and with a total sale quantity more than 30.

Product Date Price Quantity
Banana 2016-10-19 0.52 17
Bagel 2016-10-20 0.85 20
Bagel 2016-10-21 0.85 15
Banana 2016-10-22 0.52 7

Sale

SELECT Product, SUM(price * quantity) AS TotalSale
FROM sale

WHERE date > '2016-10-1'
GROUP BY Product
HAVING SUM(quantity) > 30

Product TotalSale

Bagel 29.75

2/5/20 CEE 412/ CET 522 13

Grouping and Aggregation in SQL
General form of Grouping and Aggregation

S: may contain attributes a1,…,ak and/or corresponding aggregates but
NO OTHER ATTRIBUTES

C1: any condition on the attributes in R1,…,Rn

C2: any condition on aggregate expressions

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

2/5/20 CEE 412/ CET 522 14

Aggregation Examples
Author(AuthorID, Name)

Write(PaperName, AuthorID)

◦ Find all authors who have wrote at least 10 papers

SELECT a.name
FROM author AS a, write AS w

WHERE a.authorid = w.authorid
GROUP BY a.name

HAVING COUNT(w.papername) > 10

2/5/20 CEE 412/ CET 522 15

Subqueries
A parenthesized SELECT-FROM-WHERE statement (subquery) can be
used in a number of places, including FROM and WHERE clauses
◦ In place of a relation in the FROM clause, we can place another query, and

then query its result
◦ You can use a query that is guaranteed to return a single value in the place of

a value

2/5/20 CEE 412/ CET 522 16

Subqueries

PName Price Category Manufacturer

Gizmo 19.99 Gadgets GizmoWorks
Powergizmo 29.99 Gadgets GizmoWorks
SingleTouch 149.99 Photography Canon

MultiTouch 203.99 Household Hitachi

Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product

SELECT DISTINCT c.cname, stockprice
FROM (SELECT cname, stockprice

FROM company, product
WHERE cname = manufacturer

AND product.category = 'gadgets'
) AS c

◦ Find names and stock prices for all companies that produce some product in
the “gadgets” category

Name your subquery
when using as a relation.

2/5/20 CEE 412/ CET 522 17

Subqueries Returning Relations
Product (pname, price, category, manufacturer)

Purchase (buyer, seller, store, product)

Company (cname, stockPrice, country)

◦ Find the stock prices of companies that made some products bought by Joe

SELECT stockprice
FROM company, product

WHERE cname = manufacturer
AND pname IN (SELECT product

FROM purchase
WHERE buyer = 'Joe')

2/5/20 CEE 412/ CET 522 18

Subqueries Returning Relations
Similar job can be done without subquery:
◦ Find the stock prices of companies that made some products bought by Joe

Is this query equivalent to the previous one?
◦ Duplicates can make them different.

SELECT stockPrice
FROM company, product, purchase

WHERE cname = manufacturer
AND pname = purchase.product
AND buyer = 'Joe'

2/5/20 CEE 412/ CET 522 19

Subqueries Returning Relations
The following two queries will return exactly the same results:

SELECT DISTINCT stockprice
FROM company, product

WHERE cname = manufacturer
AND pname IN (SELECT product

FROM purchase
WHERE buyer = 'Joe')

SELECT DISTINCT stockPrice
FROM company, product, purchase

WHERE cname = manufacturer
AND pname = purchase.product
AND buyer = 'Joe'

2/5/20 CEE 412/ CET 522 20

Which one is
more interpretable?

Subqueries Returning Relations
ALL and ANY with comparison operators
◦ S > ALL <set>: returns TRUE if S is larger than all values in the set
◦ S > ANY <set>: returns TRUE if S is larger than any single value in the set

◦ Example: find products that are more expensive than all those produced by
the company named “GizmoWorks”.

SELECT pname
FROM product

WHERE price > ALL (SELECT price
FROM product

WHERE manufacturer = 'GizmoWorks')

2/5/20 CEE 412/ CET 522 21

Correlated Queries
A correlated query references a table outside the subquery using a named table

Student(FirstName, LastName, Gender, Age)
◦ Find the first name that is used by more than one student.

Can this be done in single query statement?

SELECT DISTINCT firstname
FROM student AS s

WHERE lastname <> ANY (SELECT lastname
FROM student

WHERE firstname = s.firstname)

SELECT DISTINCT s1.firstname
FROM student AS s1, student AS s2

WHERE s1.firstname = s2.firstname
AND s1.lastname <> s2.lastname1

Correlated

2/5/20 CEE 412/ CET 522 22

Subqueries Returning One Tuple
If a subquery is guaranteed to produce one tuple, then the subquery
can be used as a value.
◦ Usually, the tuple has one attribute.
◦ A run-time error occurs if there is no tuple or more than one tuple.

2/5/20 CEE 412/ CET 522 23

Subqueries Returning One Tuple
Players(Name, Salary, Height, Weight, Team)

◦ Question: find the name of the player with the highest salary.

This is a bit tricky, but lets do this step-by-step:
◦ First, find the highest salary in my table

SELECT MAX(salary)
FROM player

(No column name)

15000000.00

2/5/20 CEE 412/ CET 522 24

Subqueries Returning One Tuple
Players(Name, Salary, Height, Weight, Team)

◦ Question: find the name of the player with the highest salary.

SELECT name, salary
FROM player

WHERE salary = (SELECT MAX(salary)
FROM player)

name salary

Peyton Manning 15000000.00

2/5/20 CEE 412/ CET 522 25

Views and Temporary Tables
Views are relations, except that they are not physically stored.
◦ A virtual table which stores a shot-cut of a query statement.
◦ The query will not be run or processed unless you are accessing the view from

another query.
◦ Results will be regenerated every time you access the view.
◦ Good for organize your code.

Players(Name, Salary, Height, Weight, Team)
◦ Example: create a view that stores Seahawks player information

CREATE VIEW Seahawks AS
SELECT *
FROM player

WHERE team = 'Seahawks'

SELECT MAX(salary)
FROM Seahawks

2/5/20 CEE 412/ CET 522 26

Views and Temporary Tables
Temporary tables store the results in tempDB.
◦ Good for store some intermediate results that need to be retrieved multiple

times in the future

Local temporary tables (defined by #tablename)
◦ Only available to the current connection and current login.
◦ Dropped when the connection is closed.

Global temporary tables (defined by ##tablename)
◦ Available to any connection upon their creation
◦ Dropped when the last connection using them is closed.

2/5/20 CEE 412/ CET 522 27

Views and Temporary Tables
Players(Name, Salary, Height, Weight, Team)

◦ Example: create a temporary table that stores Seahawks player information

◦ You can refer to the temporary table in other queries

◦ Remember to drop your temporary table after finishing using them

SELECT *
INTO #Seahawks
FROM player

WHERE team = 'Seahawks'

SELECT MAX(salary)
FROM #Seahawks

DROP TABLE #Seahawks

2/5/20 CEE 412/ CET 522 28

Union, Intersection, and Difference
Purchase(buyer, seller, store, product)

Person(pername, phone number, city)

◦ Example: find names of people who live in Seattle or who are buyers at GAP.

(SELECT pername
FROM person

WHERE city = 'Seattle')
UNION

(SELECT pername
FROM person, purchase

WHERE buyer = pername
AND store = 'GAP')

Outputs from two tables
must have the same
attribute names!

2/5/20 CEE 412/ CET 522 29

Union, Intersection, and Difference
If you want to preserve duplicates, use the ALL keyword.

Similarly, you can use INTERSECT and EXCEPT.

(SELECT pername
FROM person

WHERE city = 'Seattle')
UNION ALL

(SELECT pername
FROM person, purchase

WHERE buyer = pername
AND store = 'GAP')

2/5/20 CEE 412/ CET 522 30

Insertions
Often, you will use a query to replace the VALUES in the INSERT
command.

Students(Name, StudentID, Gender, Age, Major, Phone)

Freshmen(Name, StudentID, Gender, Age, Major, Phone)

INSERT INTO students
SELECT *
FROM freshmen

2/5/20 CEE 412/ CET 522 31

Select Into
INSERT INTO: Insert into an existing table
SELECT INTO: Create a new table containing these values
◦ Note: table created will have the columns contained in the select list with the

same data types as the source data.

◦ Create a table that include information of CEE students

SELECT *
INTO CEEStudents
FROM students

WHERE major = 'CEE'

2/5/20 CEE 412/ CET 522 32

Deletions
General form:

Example:

DELETE FROM R
WHERE <conditions>

DELETE FROM students
WHERE name = ‘Kris'

2/5/20 CEE 412/ CET 522 33

Updates
General form:

Example:

UPDATE R SET <new-value assignments>
WHERE <conditions>

UPDATE students
SET phone = '111-222-3333'

WHERE studentid = 1234567

UPDATE students
SET age = age + 1

2/5/20 CEE 412/ CET 522 34

Updates from Another Table
General form:

Example:

UPDATE R
SET a.attribute = b.attribute

FROM a JOIN b
ON <conditions>

WHERE <conditions>

UPDATE accident
SET a.roadseg = r.segmentid

FROM accident AS a JOIN road AS r
ON a.roadnumber = r.roadnumber

AND a.milepost BETWEEN r.begmp AND r.endmp

2/5/20 CEE 412/ CET 522 35

Constraints in SQL
A constraint is a relationship among data elements that the DBMS is
required to enforce.

The system will enforce the constraint by taking some actions:
◦ forbid an update, or
◦ perform compensating updates

2/5/20 CEE 412/ CET 522 36

Constraints in SQL
Different types of constraints:
◦ Keys, foreign keys
◦ Attribute-level constraints
◦ Tuple-level constraints
◦ Global constraints

The more complex the constraint, the harder it is to check and to
enforce.

2/5/20 CEE 412/ CET 522 37

Define the Primary Key

CREATE TABLE Person(
name VARCHAR(100),
ssn INT PRIMARY KEY,
age SMALLINT,
city VARCHAR(30),
gender CHAR(1),
birthdate DATE

)

CREATE TABLE Person(
name VARCHAR(100),
ssn INT,
age SMALLINT,
city VARCHAR(30),
gender CHAR(1),
birthdate DATE,
PRIMARY KEY (ssn)

)

The following two queries are equal:

2/5/20 CEE 412/ CET 522 38

Define the Primary Key

CREATE TABLE Person(
firstname VARCHAR(100),
lastname VARCHAR(100),
ssn INT,
age SMALLINT,
city VARCHAR(30),
gender CHAR(1),
birthdate DATE,
PRIMARY KEY (firstname, lastname)

)

Define the multi-attribute key:

2/5/20 CEE 412/ CET 522 39

Uniqueness Constraints

CREATE TABLE Person(
firstname VARCHAR(100),
lastname VARCHAR(100),
ssn INT,
age SMALLINT,
city VARCHAR(30),
gender CHAR(1),
birthdate DATE,
PRIMARY KEY (firstname, lastname),
UNIQUE (ssn)

)

Uniqueness constraint for other candidate keys:

2/5/20 CEE 412/ CET 522 40

Foreign Key Constraints
A foreign key (FK) is a column or combination of columns used to
establish and enforce a link between the data in two tables.

A link is created between two tables by adding one table's primary
key (or unique) values to the other table. This becomes a foreign key
in the second table.

What generates a foreign key when converting an E/R diagram to
relational schema?
Referential Integrity Constraint, not a many-one relationship.

2/5/20 CEE 412/ CET 522 41

Foreign Key Constraints
Example:

Country

ProductCName

StockPrice

MakeCompany Price

Category

PName

PName Price Category CName

Gizmo 19.99 Gadgets GizmoWorks
Powergizmo 29.99 Gadgets GizmoWorks
SingleTouch 149.99 Photography Canon

MultiTouch 203.99 Household Hitachi

Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product Foreign Key

2/5/20 CEE 412/ CET 522 42

Foreign Key Constraints
Declare a foreign key:

What can we infer from the above table definition?
◦ CName is a foreign key in Product to Company(CName)
◦ CName must be a key in Product, but not necessarily the primary key.

CREATE TABLE Product(
Pname CHAR(30) PRIMARY KEY,
Category CHAR(30),
Price FLOAT,
CName CHAR(30) REFERENCES Company(CName)

)

2/5/20 CEE 412/ CET 522 43

Foreign Key Constraints
Another way of declaring a foreign key:
CREATE TABLE Product(

Pname CHAR(30) PRIMARY KEY,
Category CHAR(30),
Price FLOAT,
CName CHAR(30),
FOREIGN KEY (Cname) REFERENCES Company(CName)

)

2/5/20 CEE 412/ CET 522 44

Foreign Key Constraints
What happens during updates?
Two violations are possible:
◦ An insert or update to Product introduces values not found in Company.
◦ A deletion or update to Company causes some tuples of Product to “dangle.”

PName Price Category CName

Gizmo 19.99 Gadgets GizmoWorks
Powergizmo 29.99 Gadgets GizmoWorks

SingleTouch 149.99 Photography Canon
MultiTouch 203.99 Household Hitachi

Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Product

2/5/20 CEE 412/ CET 522 45

“dangling tuples” = tuples that do not join with anything

Foreign Key Constraints
What happens during updates?
An insert or update to Product that introduces a nonexistent
Company must be rejected.

A deletion or update to Company table that removes a CName found
in some tuples of Product can be handled in three ways:
◦ Default: Reject the modification
◦ Cascade: Make the same changes in Product

- Deleted CName: delete corresponding Product
- Updated CName: change value in Product

◦ Set NULL: Change the CName in Product to NULL

2/5/20 CEE 412/ CET 522 46

What Happens During Updates?

◦ CASCADE independently for deletions and update. When we declare a foreign
key, we may choose policies from SET NULL to CASCADE.

◦ Follow the foreign-key declaration by:

◦ Two such clauses may be used, one for update and one for delete.
◦ Otherwise, the default (reject) is used.

ON [UPDATE, DELETE][SET NULL, CASCADE]

2/5/20 CEE 412/ CET 522 47

What Happens During Updates?
SQL Example:

CREATE TABLE Product(
PName CHAR(30) PRIMARY KEY,
Category CHAR(30),
Price FLOAT,
CName CHAR(30),
FOREIGN KEY (CName) REFERENCES Company(CName)
ON DELETE SET NULL
ON UPDATE CASCADE

)

2/5/20 CEE 412/ CET 522 48

SQL Practice This Friday

Like any new interface or language…
Practice is the best way to learn.

Concepts (abstract) Practice (concrete)

2/5/20 CEE 412/ CET 522 49

Test Preparation

◦ Remind you that we have a test on Wednesday next week

◦ Very specific SQL syntax questions, such as:

◦ SQL Example:

Write a query based on the given schema that returns the total number of
sales of products in the chocolate category made by each salesperson.
Include in your results only the salespeople that have sold at least 9 items

2/5/20 CEE 412/ CET 522 50

Test Preparation

◦ E/R diagrams – Interpret

◦ Converting E/R diagrams to relational schemas

◦ Conceptual questions, it is recommended that you have completed the
assigned readings

◦ Definitions covered in the class slides, including data models, normal forms,
database elements, design issues.

2/5/20 CEE 412/ CET 522 51

Tips for Success

◦ Write SQL code!!

◦ Make sure you go through the lectures on SQL and know about all of the
topics and functions we covered.

◦ Complete the readings (only two).

◦ Go through the presentations.

◦ You are allowed to bring one double sided cheat sheet.

2/5/20 CEE 412/ CET 522 52

Other Notes About the Test

◦ 3 Sections: multiple choice; T/F; short answer.

◦ No electronic devices other than calculators (no phones).

◦ Graduate tests will be larger, NO extra credit for undergrads who complete
the larger version.

2/5/20 CEE 412/ CET 522 53

Sample Questions
Which best describes Atomicity in the ACID properties of database
transactions?
a) Database constraints and rules are not violated

b) The result of concurrent operations are the same as if transactions
were executed serially

c) That committed transactions are permanently stored to disk
d) That a transaction must be completed in entirety or not at all

2/5/20 CEE 412/ CET 522 54

Sample Questions

Make Model Year
Ford F150 1999
Dodge Dart 2013
Dodge Neon 1996
Honda Accord 1989
Toyota Prius 2002
Honda Accord 2014

Name City Country
Ford Detroit, MI USA
Dodge Auburn Hills, MI USA
Honda Minato, Tokyo Japan
Toyota Toyota, Aichi Japan

◦ Given the relations above, what is the result of the following query?
SELECT make, COUNT(*)
FROM vehicles JOIN manufacturers

ON vehicles.make = manufacturers.name
WHERE manufacturers.country = 'USA'
GROUP BY make

HAVING COUNT(*) > 2

Vehicles Manufacturers

2/5/20 CEE 412/ CET 522 55

Name Salary Height Weight Team
Sidney Rice 8500000 6.33 202 Seahawks
Peyton Manning 15000000 6.42 230 Broncos
Champ Baily 9500000 6 192 Broncos
Russel Okung 7060000 6.42 310 Seahawks
Wesley Woodward 3000000 6 233 Titans
Jared Allan 14280612 6 270 Vikings

Name SID Record AvgTicket
Broncos 1001 13-3 89
Seahawks 1003 13-3 81
Titans 1002 7-9 67
Vikings 1007 5-10 89

Name City State Capacity SID
Sports Authority Denver Colorado 77160 1001
LP Field Nashville Tennessee 69143 1002
CenturyLink Field Seattle Washington 72000 1003
TCF Bank Stadium Minneapolis Minnesota 52525 1007
Soldier Field Chicago Illinois 62871 1004

Stadiums

Players Teams

Write queries to answer:

What is the average capacity of the
stadium where players who make
over $10 million play?

What stadiums are not associated
with any teams in the Teams
relation?

2/5/20 CEE 412/ CET 522 56

