Data Modeling in Excel

CEE412/CET522
transportation data management and visualization
WINTER 2020

Announcements

\square Extra credit for online quiz on next Wednesday.
\square Assignment will be published on Canvas by the end of the day.
\square Due on Jan. 22
\square Project group
\square Please Wait until the third week
\square Piazza
\square piazza.com/washington/winter2020/cee412cet522
\square Add code: 2020Winter

Summary of Survey

Topics

Data models
Data model Functionality in Excel

- Power Pivot
- Power View

Excel Exercise (Assignment 1)

Data Models

What is a data model?

- A logical structure or design for a collection of data.
- A data model is defined by the format and structure of the data elements, and the relationships between elements.
- Data represents things we want to store information about, so the data model represents some interpretation of reality.

Three levels of modeling:

Conceptual:
Translating application
needs into high-level
conceptual data structure

Logical:
Specification of data
elements, domains, data
types, and relationships

Physical:
Physical design for
implementation
(more detailed than the
logical level)

Data Models

Movie actor example: What kind of information do I want to store?
Maybe personal information, physical description, income, movie roles.
What is specified in the data model?

Actors			Have	Movies
Name				
Age		Roles		
Height		ActorName		Year
Gender	Play in	ActorName		Budget
Ethnicity		Character		Genre
Ethnicity		MovieTitle		
		Salary		

Data Models

Why do we need a data model?

- Design for efficiency in storage, access, management, and growth.
- Facilitate communication between different database users.
- Carefully plan HOW to manage data based partly on WHY you are storing it.

Accident database example (inefficient):

| AccidentID | Vehicle1_Type | Vehicle2_Type | Vehicle3_Type | Milepost | Route | Pavement type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 144567 | Sedan | SUV | | 114.2 | 005 | asphalt |
| 144568 | Pickup | | | 102.5 | 005 | asphalt |
| 144569 | Compact | Pickup | SUV | 120.1 | 005 | asphalt |
| 144570 | SUV | Pickup | | 140.1 | 005 | asphalt |
| \ldots |

Data Models

At the logical/physical level, we need to specify:

- What specific tables will be contained in the database?
- What specific fields each table will have?
- What data types will be used for each field?
- What values can a field take (domain constraints)?
- How the tables are related to each other?
- Access control and other practical issues - who can access what, etc.

Microsoft Excel

What it is:

- A spreadsheet software for data storage and analysis.
- Good for simple analysis and visualization.
- Very widely used.
- Advanced features include VBA, data connection tools, and other nifty things.

What it isn't:

- Data management system.
- Powerful statistical analysis tool.
- The best solution for large or complex datasets.
- Legitimate software development tool.

Microsoft Excel

Why are we talking about Excel?

- Because everyone has some experience with it.
- As a simple introduction to the broader topics in this class.
- To introduce less well known but useful functionality in Excel.

Data Models in Excel

Now on to data models in Excel

- Data model can reference Excel tables, as well as external data (e.g. databases, other workbooks).
- A data model is automatically created by adding tables to the workbook data model

Power Pivot (Excel Add-in)

- Based on powerful database technology.
- The only way to handle very large datasets in Excel (multiple millions of rows).
- Data modeling and schema editing in a special interface.
- Low memory usage, even compared to the source of the data.

Data Models in Excel

An example:

- Say we have an Excel workbook with two worksheets: Accidents and Vehicles.
- Accidents: A set of accident records for a road section and time period.
- Vehicles: a description of each vehicle/driver involved in a set of accident records.
- The two tables are related by the ReportNum field

Accidents	Involve	Vehicles
ReportNum		ReportNum
Date	Make	
Weather		Model
Severity		DriverAge
Location		

Data Models in Excel

Start by:

- Highlighting the data in each worksheet.
Create tables by clicking the Format as Table button on the Home tab.

Data Models in Excel

- When both tables are created, click the Add to Data Model button on the Power Pivot tab.
- A workbook data model is automatically generated when tables are added.
- Note: Power Pivot is a COM Add-in, and will need to be enabled the first time you use it. We will go through the process in the exercise later.
- Next, define relationships...

Data Models in Excel

- Relationships can be defined in multiple ways.
- One way is to view the Diagram View in the Power Pivot window.
- Simply drag the join field from one table to the other as shown

Data Models in Excel

In Power Pivot, relationships are directional. This requires that, in at least one of the two tables, the joining field only contains unique values.

What does this mean?
If you are trying to filter or aggregate a field in table \mathbf{A} based on the values in table \mathbf{B}, table \mathbf{B} must have only unique values in the joining field. Example:

- If we are matching \mathbf{A} and \mathbf{B} by matching the values of a column named

ID_number, B must have only a single row for each unique value of
ID_number.

Data Models in Excel

Why the directionality?

In relational databases, there are three types of relationships:

- One to one - Each row in one table may only be matched to a single row in another table, and vice versa
- One to many - Each row in table A may correspond to any number of rows in table B BUT: each row in table B can only be matched to a single row in table A
- Many to many - Any row in one table may be matched to any number of rows in the other, and vice versa. This is not supported in Power Pivot/Power View

Power Pivot and Power View work on relational concepts, but are greatly simplified compared to a true database management system

Power Pivot Examples

- Got a giant text file that will not open in Excel?
- Need to take a look at the data?
- You can get data from external sources in Power Pivot
- For example, we import data from a text file in our local disk

Power Pivot Examples

- Find your text file, can be .csv, .txt, or .tab
- You can filter rows out before importing

| Table Import Wizard |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Connect to Flat File |
| Enter the information required to get data from flat files. |

Power Pivot Examples

- You can preview the data in the Power Pivot window, or create a pivot table to summarize the data.
- In a blank Excel worksheet, click Pivot Table under the Insert menu.
- Select Use this workbook's Data Model as the table has already been imported. Click OK.

Power Pivot Examples

- Edit the pivot table to show the desired summary statistics.
- We will go into pivot tables in the exercise, this is just to show what is possible.
- My dataset contained spending data for all 2016 presidential candidates. The Pivot table summarizes total spending by candidate.
- You can also download the data from this website:
http://www.fec.gov/disclosurep/PDownload.do
- This is a great way to view and summarize a dataset that is too large to open in Excel.

Power Pivot Examples

Pivot Tables are a great way to summarize and perform simple descriptive analysis.
Each column in a dataset can be used in the following way, depending on the type and format of the data:

- Filter - set a value or range of values to include in the summary table
- Example: date/month can often serve as a filter, to show only data corresponding to a given time range
- Column/Row - Each unique field will correspond to a single column/row in the summary table
- Example: candidate names
- This is similar to Column, depending on how you like the layout of the Pivot Table.
- Value - The values to summarize, take the mean, variance, count, or other aggregation
- Example: sum of sales or average customer spending if we are looking at the sales data of a store.

Power Pivot Examples

Power Pivot Examples

- Still on the candidate expenditure data, here I have added the state field into the COLUMNS area.
- The result table is a summary of candidate expenditures in different states, with candidate names on rows and states on columns (shown on next slide).
- Note that you can add multiple fields into COLUMNS or ROWS area to aggregate your results at different levels. But this may also produce a Pivot Table that is not readily interpretable.

2016 Presidential Candidate Expenditure by State

Sum of disb_amt Row Labels	$\begin{aligned} & \text { Colu } \\ & \mathrm{AB} \\ & \hline \end{aligned}$	bels \qquad	AK	AL	AM	AR	AS	AU	AZ	BC	CA	CO	CT	D.	DC
Bush, Jeb			3,000.00	270,775.60		44,284.14			169,144.14		1,808,473.52	18,470.91	100,279.29		1,927,765.14
Carson, Benjamin S.		760.00	3,000.00	2,365,407.36	2,886.75	35,094.21			90,377.28	14,491.57	1,009,471.71	31,484.98	7,265.49		1,383,116.62
Christie, Christopher J.			2,840.70	10,000.00		25,000.00			17,739.26		909,750.68	25,507.29	12,145.97		174,978.30
Clinton, Hillary Rodham			25,974.93	2,592,226.80		16,162,879.58			222,938.23	4,432.96	16,373,746.63	5,040,136.07	10,966,897.52	2,500.00	352,970,213.18
Cruz, Rafael Edward 'Ted'			3,454.93	21,953.12	2,506.35	121,309.24		97.00	66,982.77	568.10	7,440,767.64	127,907.08	11,687.79		1,053,306.58
Fiorina, Carly			3,044.00	60,299.84		25,000.00			1,101,630.67		495,236.84	151,433.68	26,333.55		2,189,378.68
Gilmore, James S III															52,749.04
Graham, Lindsey O.				10,000.00		27,079.13			69,136.99		290,745.71	4,258.73	17,970.62		365,306.93
Huckabee, Mike			2,500.00	20,923.56		1,364,877.18			10,356.52		242,470.22	6,897.73	978.67		16,136.85
Jindal, Bobby				10,000.00		26,009.88			3,292.00		4,531.33	3,468.15			37,882.13
Johnson, Gary			8,521.30	8,417.98					273,025.53		1,688,357.82	50,508.91	8,137.82		127,061.06
Kasich, John R.			3,000.00	21,450.95		50,560.05			101,001.06		1,423,971.26	13,621.77	23,471.68		682,326.74
Lessig, Lawrence				7,500.00							146,552.10				101,001.06
McMullin, Evan									12,324.00		268,346.37	48,520.00	806.02		117,835.84
O'Malley, Martin Joseph			1,000.00	3,985.53		3,064.71			18,780.62		138,107.33	1,238.76	33,818.55		1,302,277.62
Pataki, George E.											7,456.64				5,822.50
Paul, Rand			3,960.00	25,364.98		32,206.26			47,274.83		528,226.67	17,560.00	7,791.57		514,982.23
Perry, James R. (Rick)									4,689.06		150,114.10	7,105.04	61,602.92		6,696.48
Rubio, Marco			4,000.00	20,696.09		158,905.54			330,097.89		1,415,077.92	141,988.93	23,711.79		6,783,446.97
Sanders, Bernard			77,705.20	218,911.92		193,350.55	2,500.00		735,197.23		10,634,309.55	1,003,969.27	195,343.61		51,816,796.03
Santorum, Richard J.			2,500.00	26,113.87		30,750.00			7,293.39		154,568.67	7,373.49	26,811.18		55,883.53
Stein, Jill			11,710.00	2,415.03					66,639.30		760,665.41	20,488.10	3,805.09		17,450.00
Trump, Donald J.			19,563.51	424,299.72		157,865.77			3,347,969.35		8,902,950.10	2,752,175.08	1,071,862.37		6,884,637.09
Walker, Scott				810.60		568.04			44,248.02		262,649.90	18,315.48	14,368.17		489,923.94
Webb, James Henry Jr.									5,072.02		118,356.93				174,822.26

Grand Total

$760.00175,774.57$ 6,121,552.95 5,393.10 18,458,804.28 2,500.00 $97.00 \quad 6,745,210.16 \quad 19,492.63 \quad 55,174,905.05 \quad 9,492,429.45 \quad 12,615,089.67 \quad 2,500.00 \quad 429,251,796.80$

What is Power View?

- Microsoft's interactive "data exploration, visualization, and presentation experience" -Microsoft.
- Tools for investigating and visualizing data.
- Can automate many of the data aggregation tasks, and has visualization capabilities beyond that of Power Pivot.
- Not the same as Power Pivot, but the two tools are closely related in Excel (Power View is based on data models).
- Browser-based, a Power View report is not an excel worksheet.
- Important note: save your work frequently in Power View.

Getting Started With Power View

- Once I have created a data model, I can click Insert \rightarrow Power View Report to get started with Power View
- Note: if you have not used Power View before, you will be prompted to enable it as an add on, and possibly install Silverlight if you have not already done so.

Getting Started With Power View

- I can manage relationships within Power View, and choose visual themes for my Power View Report

Getting Started With Power View

- You will note that, as with Pivot Tables, you can add fields from multiple tables in your data model
- Power View tried to guess what type of data is in each column (numeric, categorical, geospatial, etc.).
- You can customize the aggregation that is applied to each field after it is added.
- Once data has been added, you can insert various type of plots which will replace the data table.

Getting Started With Power View

- As an example graph, here I created a map showing the candidate spending as bar chart in each state.
- I also filtered candidates names to only show the data with Clinton and Trump.

Getting Started With Power View

- When completing the exercises, do some exploring and see what you can create.
- The interface is pretty intuitive for Excel users
- Note: if you have difficulty working with the data modeling tools beyond the exercises, don't sweat it. We have not yet covered the details of how/why/when data models work.

Excel Summary

Excel is not a great solution for data management or complex analysis

It is a great tool for basic analysis, and Excel 2016 has expanded data management functionality
The real point(s):

- Introduced topics of data models, Power Pivot, and Power View.
- We showed how to do some things in Excel that are relatively new.
- There are much more powerful tools available to do these things and many more, which we will start talking about next lecture.

