Introduction and Course Overview

CEE412 / CET 522

Transportation Data Management and Visualization

Winter 2020

Instruction Team

Instructor:Teaching Assistant:Zhiyong CuiSam RicordOffice: More 101 (STAR Lab)Office: More 101 (STAR Lab)Email: zhiyongc@uw.eduEmail: samuelsr@uw.eduOffice hours: 3:30 - 4:30 PM on MondayOffice hours: 2:30 - 3:30 PM on Thursday

Instruction Time: 8:30 - 9:50 AM on Wednesday and Friday Computer Lab: typically on Friday (MOR 001)

Today's Outline

Why is this course offered?

What is covered in this course?

How is the course organized?

Course survey

Why Is This Course Offered?

Why Is This Course Offered?

Origin of this course

Handling and managing data is necessary

integrated set of the set of the

UOTA The lines blur between data science and product management and other related roles at a lot of companies.

Transportation Workforce Challenge

THE WORKFORCE CHALLENGE

SPECIAL REPORT 275

RECRUITING, TRAINING, AND RETAINING QUALIFIED WORKERS FOR TRANSPORTATION AND TRANSIT AGENCIES

> TRANSPORTATION RESEARCH BOARD OF THE NATIONAL A CADE/WES

As of 2003:

- More than 50 percent of the state transportation agency workforce will be eligible to retire in the next 10 years.
- Meanwhile those qualified for transportation jobs have been decreasing over years.
- Data management and analysis are among the top desired skills for transportation workforce.

Now...

Big Data Analytics in Transportation¹

Smarter Cities: Turning Big Data Into Insight

Commercial and research oriented smart cities initiatives²

- 1. Big Data Analytics: Driving Value Beyond the Hype Roundtable Summary. (2012). Volpe & The U.S. Department of Transportation Research and Innovation Technology Administration.
- 2. IBM Smarter Cities Initiative

Congestion Is a Nationwide Problem

Congestion is not just a problem for big cities:

 Congestion in small urban area peak hour travel grew from 21% to 27% of total VMT between 2000 - 2011

46% of peak period travel is congested, 64% in Seattle¹

Seattle area fuel use attributable to congestion: more than 47 million gallons/year¹

4.3 billion hours wasted

Indirect effects:

• air pollution, travel cost, etc.

^{1.} Texas A&M 2012 Annual Urban Mobility Report

Data Is Critical for Modern Transportation

Modern Transportation Requires Intelligent Transportation Systems (ITS)

ITS Requires Intelligence \rightarrow Intelligence Requires Information \rightarrow Information Requires Data

Smart cities and smart transportation means:

- Ubiquitous sensing
- Data analytics
- Open data sharing
- Data-driven decision making

Data Acquisition, Management, and Interpretation Require Combination of Technologies from Transportation and IT Fields.

We Need Traffic Information

We Need Traffic Information

Key Arterial Performance Measurement

On SR-99

Participants:

We Need Traffic Information

Transportation Database

Advanced Traveler Information Systems

Google Map Based Arterial Traffic Performance System

Source: http://www.uwdrive.net/

Artificial Intelligence Transportation Platform

Collect

Process

Input the data into proper AI models

Visualize

Data Is Crucial for the Success of ITS

1/8/2020

When will We Have a Fully Instrumented System?

Source: Christine Johnson, 2001

Example: Architecture for ATIS

ATIS: Advanced Traveler Information System

Why Have Intermediate Procedures?

Direct outputs of transportation sensors may not be in a form easy to understand.

For example, a loop detector typically outputs nothing but a series of "high" or "low" voltage that can be represented in binary form.

CEE 412 / CET 522

Single Loop Measurements Are Very Useful

70.2

67.4

Many On-Line ATIS are based on single loop data!

1

3

00:00:20

00:00:40

0.06%

1.90%

Loop Detectors in Greater Seattle Area

Over 7000 loop detectors in WSDOT's northwest region alone.

Combine Other Data Sources

How To Handle These Data?

If loop measurements are archived every 20 seconds, and each record requires 20 bytes to store it, then 8,000 single loop detectors require

24 * 3600 / 20 * 20 * 8000 = 660 MB storage space per day!

Remember this is just data from loop detectors on freeways. We have also probe vehicle data, accident data, freight data, video data, ..., to deal with!

What about Other Sources of Data?

Example: INRIX

- 175 million devices
- 4 million miles of road
- 40 countries
- Terabytes of data per day
- Real time traveler information, analytics, and decision support

Benefits of Well-Managed Data?

Google Scholar X		kristian 💶 🗖 🚺	×
← → C 🔒 https://scholar.google.c	om	😪 🐠 🕼 🔶 I	≡
👯 Apps 🗋 New Tab 👿 CIVIL & ENVIRONM	🕒 Save to Mendeley 🔯 Google Scholar 🕒 CSE547 / STAT 548	» 🦳 Other bookmar	ks
Web Images More		starbwproject@gmail.co	m
	🖿 My library 🅜 My Citations 🛛 Alerts More 🗸		
l	• Articles (include patents) Case law	Q	
	Stand on the shoulders of giants		
	At	bout Google Scholar Privacy Term	ns

Efficiency for data processing and query can be very different.

Benefits of Well-Managed Data?

DRIVE Net:

- WSDOT has massive data resources, but struggles to apply much of it in performance reporting and decision support
- Organization, data integration, spatial conflation, data sharing, etc. are disjointed and often done "as needed" for specific tasks
- To WSDOT, DRIVE Net represents a an automated data management and integration platform

Well managed data: Maintenance and analysis is simplified

Poorly managed data: often the work associated with making it useable outweighs the benefit of using it

Extracting Useful Information

Transportation Data Analysis

• Data analytical methods for transportation data analysis

Transportation Data Visualization

• Proper data visualization tools to generate charts, graphs, maps, etc.

Data Visualization

Data Visualization

- Graphical representation of information and data
- Common types:
 - Charts, Tables, Graphs, Maps, Infographics, Dashboards

Benefits from Data Visualization

- Pattern discovery
 - Trends, outliers, patterns in data
- Efficient to see the big picture
- Support the decision-making process

Importance of Data Visualization

Importance of Data Visualization

Source: http://www.uwdrive.net/

Importance of Data Visualization

That's Why We Offer CEE 412/CET 522

- The quantity and variety of data sources available for transportation management and decision making is rapidly increasing
- Storing and retrieving transportation data efficiently is crucial
- Proper visualization of processed data and analysis results can benefit the decision-making process

What Is Covered in This Course?

Data Management Concepts and Tools

Relational Database Design and Management

 Structured Query Language (SQL) - special purpose database programing language

• Microsoft SQL Server – Enterprise database management system

Data Visualization

• R - a software package used for statistical analysis

Data visualization concepts and tools

• Data Sharing and visualization using R Shiny package

 Creating a data pipeline: analysis, visualization, and communication

How Is This Course Organized?

Week	Day	Date	Торіс	Room	Notes	Homework
1	Wed	Jan. 8	Introduction and Course Overview	More 220	Course Survey	
	Fri	Jan. 10	Excel Data Model Practice	More 220		A#1 Out
2	Wed	Jan. 15	No Class (TRB Meeting)	More 220	TRB Week	
	Fri	Jan. 17	Introduction to Databases	More 220		
3	Wed	Jan. 22	E/R Diagram	More 220		A#1 Due, A#2 Out
	Fri	Jan. 24	Relational Data Model	More 220		
4	Wed	Jan. 29	Structured Query Language (SQL) I	More 220		A#2 Due, P#1 Out
	Fri	Jan. 31	SQL Practice	More 001	Exercise	
5	Wed	Feb. 5	Structured Query Language (SQL) II	More 220		
	Fri	Feb. 7	SQL Practice	More 001	Exercise	A#3 Out
6	Wed	Feb. 12	Midterm 1	More 220		
	Fri	Feb. 14	Advanced SQL & Introduction to R	More 220		P#1 Due, P#2 Out
7	Wed	Feb. 19	Transportation Data Analysis	More 220		
	Fri	Feb. 21	R Practice	More 001	Exercise	A#3 Due, A#4 Out
8	Wed	Feb. 26	Data Visualization	More 220		
	Fri	Feb. 28	Data Visualization in R & Shiny	More 220		
9	Wed	Mar. 4	Data Visualization & Shiny Practice	More 001	Exercise	A#4 Due
	Fri	Mar. 6	Guest Lecture - Data Management & Visualization	More 220		
10	Wed	Mar. 11	Midterm 2	More 220		
	Fri	Mar. 13	Shiny Practice	More 001	Exercise	
11	Wed	Mar. 18	Final Project Presentations (8:30-9:50 AM)	More 220		P#2 Due

Assignments and Projects

Written assignments

- Assignment #1: Data Analysis Using Excel (exercises)
- Assignment #2: Database Modeling (SQL basics)
- Assignment #3: Database Modeling (Advanced SQL)
- Assignment #4: Data Analysis (SQL + R)

Around 6 in-class exercises

Submit online through Canvas as separate files (please don't submit zip files)

Projects: Team projects with functional products

- Project #1: Excel + SQL Server Project
- Project #2 (Final project): SQL + R + Shiny Application Development

Policy

No late assignment/project will be accepted.

If extreme circumstances come up, it needs to be discussed before the assignment due date.

Class attendance is expected, not required.

Grading:

- Assignments: 30%
- Midterm Exam: 30%
- Projects: 40%

Other Class Notes

Canvas – everything will be uploaded before lectures/exercises
Except for the Question & Answer discussion board: Piazza

Readings will be assigned as needed

No class on next Wednesday (because of the annual TRB meeting) • Optional online quiz for extra credits.

Assignment 1

• Complete and turn in Exercise 1 (with some simple questions).

Instruction Team

Teaching Assistant: Instructor: Zhiyong Cui Sam Ricord Office: More 101 (STAR Lab) Office: More 101 (STAR Lab) Email: zhiyongc@uw.edu Email: samuelsr@uw.edu Office hours: 3:30 - 4:30 PM on Monday Office hours: 2:30 - 3:30 PM on Thursday Instruction Time: 8:30 - 9:50 AM on Wednesday and Friday Computer Lab: typically on Friday (MOR 001) When you send emails to the instructor/TA, I would recommend you name the email begin with [CEE412] or [CEE412 CET522].